3 research outputs found

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    Evolutionary Developmental Biology and the Limits of Philosophical Accounts of Mechanistic Explanation

    No full text
    Abstract Evolutionary developmental biology (evo-devo) is considered a ‘mechanistic science, ’ in that it causally explains morphological evolution in terms of changes in developmental mechanisms. Evo-devo is also an interdisciplinary and integrative approach, as its explanations use contributions from many fields and pertain to different levels of organismal organization. Philosophical accounts of mechanistic explanation are currently highly prominent, and have been particularly able to capture the integrative nature of multifield and multilevel explanations. However, I argue that evo-devo demonstrates the need for a broadened philosophical conception of mechanisms and mechanistic explanation. Mechanistic explanation (in terms of the qualitative interactions of the structural parts of a whole) has been developed as an alternative to the traditional idea of explanation as derivation from laws or quantitative principles. Against the picture promoted by Carl Craver, that mathematical models describe but do not explain, my discussion of cases from the strand of evo-devo which is concerned with developmental processes points to qualitative phenomena where quantitative mathematical models are an indispensable part of the explanation. While philosophical accounts have focused on the actual organization and operation of mechanisms, properties of developmental mechanisms that are about how a mechanism reacts to modifications are of major evolutionary significance, including robustness, phenotypic plasticity, and modularity. A philosophical conception of mechanisms is needed that takes into account quantitative changes, transient entities and the generation of novel types of entities, feedback loops and complex interaction networks, emergent properties, and, in particular, functional-dynamical aspects of mechanisms, including functional (as opposed to structural) organization and distributed, system-wide phenomena. I conclude with general remarks on philosophical accounts of explanation
    corecore